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The formal refinement methods of least-squares adjustment or difference-map analysis give atomic 
positions in protein structures with standard deviations which are large compared with the standard 
deviations of accepted molecular dimensions. This paper describes a method of adjusting the Cartesian 
coordinates to obtain a properly weighted fit to both the positions from the refinement and the molecular 
parameters. The equations which have to be solved have many unknowns but few coefficients, and 
an effective iterative method can be used. The results of applications of the method to insulin are sum- 
marized. 

Introduction 

At various stages in the determination of the crystal 
structure of a protein, an electron density map is inter- 
preted to produce a set of atomic positions. These are 
usually chosen to give a good fit to the electron density, 
but it is not usually easy to ensure that all the bond 
distances, angles and other molecular parameters cor- 
responding to the chosen positions agree with those 
found in smaller structures. 

A similar situation arises when position shifts are 
deduced either by analysis of a difference map, or by 
the method of least-squares. 

The need arises for a method by which the best inter- 
pretation can be made, either for the calculation of 
structure factors and further refinement or for publica- 
tion. It has been common practice to build a model in 
which certain types of bond distances and angles agree 
exactly with pre-set values. Usually a technique such 
as that of Diamond (1966) is used, in which model- 
building starts at one end of a polypeptide chain and 
successive dihedral angles are adjusted in turn to give 
a good fit to positions obtained by interpretation of the 
density. The difficulty can arise that no set of positions 
obeying the distance and angle conditions fits t h e  
density well enough. If attempts are made to put 
matters right by allowing certain angles to vary, then 
these angles are liable to take on improbable values. 

These difficulties are not surprising. Molecular 
dimensions are the results of interactions between 
interatomic forces for atoms bonded together and 
those for atoms further away in the structure. We can 
reasonably expect that the forces due to secondary and 
tertiary structural features will cause small variations 
in primary structural dimensions. 

* Present address: IBM Thomas J. Watson Research Labo- 
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These variations are hard to predict and we cannot 
expect to do more than to take them into account by 
assigning standard deviations to the primary dimen- 
sions. It is not feasible to carry out a detailed spectro- 
scopic analysis for force constants in a molecular 
system of the size of a protein. The standard deviations 
for molecular parameters which we use are, therefore, 
approximate estimates. Fortunately this appears to be 
adequate for our purposes. 

The primary dimensions become inexact observa- 
tions with the same status as the observations on the 
atomic positions. All the observables are functions of 
the Cartesian coordinates of the atoms, and an optimal 
fit can be obtained by a least-squares adjustment of 
these. 

The structure of insulin contains about 800 unique 
atomic positions, so that there are about 2400 Cartesian 
coordinates to be adjusted. The situation can be im- 
proved by adjusting separate polypeptide chains inde- 
pendently, but the systems of equations are still very 
large. We have solved them successfully by use of the 
conjugate gradient algorithm of Hestenes & Stiefel 
(1952). For this, the normal equations need not be 
computed explicitly, and full advantage is gained from 
the small number of non-zero coefficients in the obser- 
vational equations. 

The method which we describe here is very similar 
to those used by Levitt & Lifson (1969), Levitt (1974) 
and Hermans & McQueen (1974). They have obtained 
their minimization functions by discussing the energies 
required for molecular deformations, while we have 
derived a minimization function by considering force 
constants, but these two approaches are essentially 
equivalent. Our work differs from that of these other 
authors in that we do not attempt to include the effects 
of van der Waals forces except by assigning standard 
deviations to constrained interatomic distances. Ac- 
cordingly the function that we minimize is quadratic in 
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the atomic coordinates to a good approximation and 
we obtain rather rapid convergence with the conjugate 
gradient algorithm. Because of this our method can 
conveniently be applied to adjust the coordinates given 
by each stage of difference-map refinement, and adds 
little to the total computing time. 

Another difference between our work and that of 
previous authors lies in the technique we have used to 
maintain approximate planarity for aromatic groups 
and peptide linkages. 

At an early stage of the refinement the positions 
obtained from a difference map are of low accuracy. 
They are therefore given low weight, and the model 
produced by our method obeys the heavily weighted 
constraints on bond lengths almost exactly. As the 
accuracy of the map coordinates improves, this situa- 
tion changes, and any departures from constrained 
molecular dimensions which then develop can reveal 
discrepancies between the assumptions which have been 
made and the actual behaviour of the molecule. We 
show later how this was used to improve our model for 
the planarity of the peptide groups of insulin. 

Minimization function and observational equations 

We minimize a sum of squared terms of two kinds. 
(a) The weighted squares of the distances between 

the indicated positions (e.g. positions of peaks on a 
map) and those for the adjusted model. 

(b) The weighted squares of the differences between 
target interatomic distances and those for the adjusted 
model. 

The interpretation of (a) needs no comment, nor 
that of (b) for constraints on bond lengths, but we also 
constrain bond angles, and this is done by defining 
target interatomic distances for pairs of atoms which 
are next-nearest neighbours in the structure. Con- 
straints on bond distances and angles are not adequate 
to ensure reasonable planarity for groups such as 
peptide links and aromatic side chains. For each such 
group we place an artificial null-atom (since it makes 
no contribution to any structure factor) 20 A from the 
plane of the group along some convenient line normal 
to this plane. Constraints on the distances between the 
null-atom and those in the group then maintain 
planarity. It has been found to be satisfactory to eva- 
luate target distances for these constraints by calcula- 
tion for an idealized planar group, so that only one 
set of target distances needs to be found for each type 
of group. The positions of the null-atoms are not 
constrained in any way except by their distances from 
the atoms of the groups. 

The weight attached to each map coordinate is the 
inverse of the square of its estimated standard devia- 
tion. Similarly the weight for a distance is the inverse 
square of its e.s.d. Because the distances are better 
defined than the positions of the atoms, the equations 
are somewhat ill-conditioned in such a way that the 
fitted model can move as a rigid body without making 

any great difference to the minimization function. This 
leads to some slowness in the convergence of the con- 
jugate gradient algorithm. 

It can be shown that the various terms in the mini- 
mization function correspond to observational equa- 
tions of the following kinds. For an atomic positional 
coordinate, e.g. xr with an indicated value ~, (~ may be 
given by a peak position on a Fourier map) we get 

/ , 

where Jx, is the correction to be applied to the present 
value of xr, and Wr is the reciprocal of the square of 
the estimated standard deviation of ~,. 

For an interatomic distance calculated as l,s from the 
model, with a target value d,~, we get 

+ Vr¢,; Olr  gw,,(4,-tr3, 

where, again, Jxr . . . Jzs  are the corrections to be ap- 
plied to the six positional coordinates for atoms r and s, 
and W,s is the reciprocal of the square of the estimated 
standard deviation of d~. The derivative Ol,~/Ox,. is 
given by 

c3l, JO x ,=  ( x , -  x~)/l~ , 

with similar equations for the other derivatives. These 
equations are written as if ( x . y . z r )  are referred to 
orthogonal axes and measured in A, but the modi- 
fications for other situations are not hard to devise. 

The whole collection of observational equations can 
be written in matrix notation as 

B~ix = d ,  

where B is a large matrix having very few non-zero 
coefficients (no more than six in any one row). The 
corresponding normal equations are 

B rB6x = B rd, 

and we could, in principle, form and solve these. In 
practice this is inconvenient because B T B  has a large 
number of non-zero coefficients and it is therefore 
troublesome to store and manipulate. We avoid the 
difficulty by use of the conjugate gradient algorithm, 
which can be written 

Get ~ix0 =0 
Get Po = r0 = B rd 
For k = 0 , 1 , 2 , . . .  
Get qk = B rBPk 

C~k = rr  pk/p~ qk 

6 X k  + 1 = ~ X k  q- o~kp k 

rk  + x ~- rk  - -  o~kqk 

ilk = -- rr+ lqJprqk 

Pk+l =rk+l  +flkPk • 
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It will be noticed that each step requires the multiplica- 
tion of a vector by the sparse matrix B followed by 
multiplication of the resulting vector by B r. The 
elements of B can either be stored in a compact way, 
or they can, quite economically, be computed each 
time they are required. Apart  from this, the process 
requires storage for the vectors Pk, th, rk and ~ixk, each 
of which can be overwritten by its successor. 

The iteration can be continued for as many values of 
k as are necessary to provide convergence. Theoretic- 
ally, perfect convergence is achieved when k is equal to 
the number of parameters in 6x, but this of little 
practical value if that is about 2400. In fact the process 
converges quite fast and we have chosen to terminate 
when k =  10 if the largest element of akPk has not be- 
come smaller than a pre-set limit. The elements of B 
are then recalculated to take account of any alterations 
in the direction cosines of interatomic distances and the 
process is re-started. Four or five such outer iterations 
have normally provided an adequate fit, and the speed 
of the process has not been sensitive to the number of 
inner iterations in an outer iteration. 

Most computing installations are likely to be able 
to provide a library routine to carry out the conjugate 
gradient process. It may prove difficult to use such a 
routine, however, because of the need to use the 
factorized form B TB for the matrix of the equations, 
or because of the storage requirements for this problem. 
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Fig. 1. R.m.s. deviations in .~ from initial coordinates derived 

from a 2.8 A resolution map for a B chain of 4-Zn insulin. 
Each point represents the r.m.s, deviation for the atoms of 
a single residue• Graph (a) is for the atoms of side chains 
only. Graph (b) is for the main-chain atoms only. The 
broken line is for the fitting procedure of Diamond (1966) 
and the chain dotted line is for the procedure of this paper. 

There should be little difficulty in producing a program 
which will serve, but it may be worth while to remark 
here that the value of ak is such that r/+ zPk = 0, and that 
flk is such that p/+lqk=0, for all k. These relations serve 
as a useful check on the correctness of the algorithm. 

Applicat ions  o f  the method to insulin structures 

We have used this method to fit acceptable models to 
sets of atomic positions obtained from: 

(i) a 2-8 A resolution map of 4-zinc insulin 
(ii) a 1.5 A resolution map of 2-zinc insulin, where 

the phases used were obtained by the Sayre least- 
squares phase refinement process (Sayre, 1972) and 

(iii) a difference synthesis of 2-zinc insulin at 1.5 A 
resolution. 

(i) The initial coordinates for the 4-Zn molecule 
(100 residues, 812 atoms) were obtained in the usual 
way by fitting a model to the electron density map in a 
Richards comparator. 

These coordinates gave a model which deviated 
from ideal geometry by up to 1.4 A. in a bond distance 
45 ° in a valence angle and 17 ° in the co torsion angle. 
We assigned standard deviations of 0.2 A, to the Xand Y 
and 0-3 A. to the Z coordinates (parallel to the section 
axis of the electron density map) and refined the model 
for four cycles, treating each of the four chains as a 
separate entity except for the disulphide bridges. The 
overall geometry of the model based on these refined 
coordinates gave bond distances usually within 0.01 A 
of the ideal values, (maximum difference 0.02 A), 
valence angles usually within 5 ° of ideal (maximum 
difference 24 °) and 09 torsion angles greater than 176 °. 
The largest deviations from ideal values are commonly 
found to be at C~ atoms• 

The efficiency of this method of refinement may be 
evaluated by a comparison with the results of a model 
fitted to the original coordinates by the Diamond 
(1966) procedure. Both operations were carried out on 
an ICL 1906A computer with CPU times estimated at 
4 min for this method and 25 min for the Diamond 
method. Fig. 1 shows the RMS deviations of coor- 
dinates derived by each of the two methods, from the 
initial coordinates, for one of the chains of the insulin 
molecule. 

It can be seen that the use of the method described 
here constrains the model to lie more closely to the 
initial set of coordinates than the model given by the 
rigid-body method and this is perhaps reflected in the 
calculated structure factors which gave R values of 
0.409 for the original coordinates, 0-407 for coordinates 
derived by the method described here and 0.413 for 
coordinates derived from the Diamond method. 

(ii) Coordinates were obtained from the 1.5A 
Sayre map of 2-Zn insulin by choosing positions as 
close as possible to the maxima on the electron density 
map. This crude approach led to a model with severe 
discrepancies in the molecular geometry, e.g. by as 
much as 1-1 A in bond lengths, 70 ° in valence angles 



314 S A T I S F A C T O R Y  MODELS IN P R O T E I N  S T R U C T U R E  R E F I N E M E N T S  

and 54 ° in co torsion angles. These coordinates were 
assigned standard deviations reflecting our confidence 
in their positions. For example carbonyl O atoms 
appeared very strongly in the map and were assigned 
relatively low standard deviations, typically of 0.08 A in 
the X and Y coordinates and 0.12 A in Z. After five 
cycles of refinement the model coordinates showed a 
geometry where the largest deviations from ideal 
values were 0-03 A in bond lengths, 23 ° in bond angles 
and 5 ° in the co torsion angle. The overall computation 
time was of the order of 1.4 s per residue. 

In Fig. 2 a typical section of the electron density map 
is shown with the initial and refined coordinates super- 
imposed. 

(iii) We have also used the method to correct the 
geometry of the coordinates obtained for 2-Zn insulin 
at 1.5 A resolution after two rounds of difference 
Fourier refinement. The geometry of this model 
deviated from the ideal by up to 0.6 .~ in bond lengths, 
50 ° in valence angles and 40 ° in the co torsion angle. 
After three cycles of refinement the deviations from the 
ideal geometry were of the same order as for the 
previous examples. A possible danger in using a 
model-fitting method to correct the geometry of coor- 
dinates derived from a difference map is that such a 
correction may produce shifts in the coordinates in 
directions which negate the improvements b~ought 
about by the difference-map refinement. 

At early stages in the 2-Zn insulin refinement this 
did not occur. For the second difference map R for the 
output coordinates was 30.7 %. The coordinates were 
then adjusted by the method of this paper and R rose 
to 31.1%. A difference map computed from these 
coordinates gave output coordinates yielding an R of 
26.8 %. At later stages the increase in R as a result of 
fitting the coordinates to molecular dimensions be- 
came as much as 2 %. It was believed that this was due 
to the requirement that the peptide groups should be 
planar to high accuracy, and the standard deviations 
for a C atoms in the peptide planar groups were in- 
creased from 0.01 to 0.04 A. In the next cycle the in- 
crease in R produced by the fitting process was reduced 
to 0.6%. 

It is clear from these results that any excessive 
rigidity in the set of constraints will produce a signi- 
ficant increase in disagreement with the X-ray data 
once the refinement progresses to the point at which the 
accuracy is sufficient to reveal this. Careful examina- 
tion of the results in such a situation can lead to an 
understanding of the problem and the effects of an 
appropriate relaxation of the constraints can then be 
tested. We consider that it is an advantage of the 
flexible constraint process that the validity of the 
assumptions can be tested in this way. 

Description of the programs 

The program is written in standard Fortran and a 
version currently in use on the ICL 1906A computer 

will accept up to 65 residues (650 atoms) with a core 
requirement of 90 K words (24 bit word length). The 
target distances used in the progam have been taken 
from Molecular Structures and Dimensions Vols. 1 to 5 
(Kennard, Watson & Town, 1970a, b, 1971, 1973, 
1974). The e.s.d.'s have been set as 0.01 A for bond 
distance and planarity constraints (distance between 
the atoms in the planes and the null-atoms), and 1.5 ° 
for the valence angles. This gives a root weight of 100 
for the bond and planarity constraints and of the order 
of 60 for tetrahedral angles with decreasing values for 
smaller angles. The null-atoms are given e.s.d.'s of 
1000 A, which effectively allows them to move freely 
from their original calculated positions (20 A on a line 
normal to the least-squares plane and passing through 
the centroid of the group of atoms). Our present 
experience suggests that this rather arbitrary weighting 
scheme is adequate. 

For the first cycle of refinement the model coor- 
dinates are set to the input map coordinates and, in 
order to prevent too large a shift from these positions, 
all the map coordinates which have e.s.d.'s greater 
than 0.02 A are given an e.s.d, of that value. In later 
cycles the true e.s.d, for each coordinate is used. 

The input to the program consists of a file of 
orthogonal coordinates, a connectivity file and a file 
specifying planar groups of atoms. These latter two 
files are created by a separate program which has been 
freely adapted by E. J. D. from the standard group 
section of a program written by Diamond (1966). 
Because of the gross errors which may arise in reading 

Fig. 2. Composite of sections of the map of 2-Zn insulin, 
phased by the method of Sayre (1972), showing electron 
density peaks corresponding to parts of one of the B chains. 
The broken lines connect positions estimated directly from 
the peaks. The full lines connect positions fitted by the 
method of this paper. It can be seen that the imposition of 
satisfactory molecular dimensions does not spoil the fit to 
the density. 
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protein coordinates from a map the connectivity has to 
be based on atom types rather than on interatomic 
distances. This program makes the connexions between 
atoms on the basis of the atom label and at the same 
time assigns for each connexion a code number which 
defines the target bond length. Where an atom has 
more than one connexion the combination of these 
codes defines the target angle. In a similar way atoms 
which should be planar are listed and coded. The 
program calculates bond lengths and angles and prints 
a list of these which should be checked before the 
fitting calculations are carried out. 

Copies of the Fortran text of this program, which 
includes the dimensions which we have used for the 
various standard groups, can be obtained from one 
of us (N.W.I.). 

Conclusions 

The method of this paper has invariably produced 
models for protein structures with acceptable bond 
lengths, bond angles, and planarities, and the positions 
obtained have fitted all the atomic positions derived 
from refinement processes, within the limits prescribed 
on the basis of the estimated accuracies of these posi- 
tions. The cost of applying the method has been con- 
siderably less than that of computing a difference map 
or that for the corresponding set of structure factors, 
in the case of insulin. Since the starting model need 
not obey the constraints accurately, there is no dif- 

ficulty in providing suitable starting coordinates, nor 
in obtaining sufficient convergence from them. The 
method therefore turns out to be simple to use and 
free from characteristics which tend to cause failures. 
This is in a great measure due to the possibility of 
generating the elements of the observational equations 
automatically. 

The simplicity, power, economy and reliability of" 
the method encourage us to recommend it for general 
use in protein structure refinement. In combination 
with methods such as that of Sayre (1972) for generating 
Fourier maps displaying near atomic resolution, it 
appears to offer a route to optimally refined models of 
proteins which requires less tedious precise human 
interpretation of electron density maps than has been 
needed up to now. 
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The temperature dependence of the integrated X-ray diffracted intensities in sodium metal has been 
determined for the 222, 400, 330, 411 and 332 reflexions in the temperature range 148 K to the melting 
point of 371 K. In the temperature range 148 K to about 300 K, all the data can be fitted using a 
quasi-harmonic approximation for the temperature factor. From room temperature to the melting 
point the intensities for all the reflexions were observed to decrease rapidly with temperature, and could 
not be fitted either with a quasi-harmonic or fourth-order anharmonic model for the temperature factor. 
There is no evidence for anisotropy in the intensities below room temperature, but from 293 K to the 
melting point, anisotropy increases rapidly. A qualitative explanation of the high-temperature phen- 
omena in terms of a lattice relaxation around the vacancies has been advanced. 

Introduction 

Anisotropy in the room-temperature X-ray structure 
factors of body-centred cubic sodium has been re- 
ported recently (Field & Medlin, 1974, hereinafter 
referred to as I). In that paper, the integrated intensity 
data was analysed, following the formalism of Willis 
(1969), in terms of an anharmonic temperature factor 
derived from a fourth-order anisotropic expansion of 

the single-atom potential function appropriate to the 
body-centred cubic structure. No conclusion could be 
drawn from the single-temperature experiment about 
the contribution of possible isotropic anharmonic 
terms to the temperature factor because the isotropic 
parameters are strongly correlated with the harmonic 
parameters in the least-squares analysis. The experi- 
ment discussed in the present paper was carried out to 
investigate both the possible contribution of isotropic 


